Домой / Иное / Тригонометрия. Обратные тригонометрические функции. Арккосинус. Обратные тригонометрические функции, их графики и формулы График функции y 2 arccos x

Тригонометрия. Обратные тригонометрические функции. Арккосинус. Обратные тригонометрические функции, их графики и формулы График функции y 2 arccos x

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям .

Арксинус (обозначается как arcsin x ; arcsin x — это угол, sin его равняется x ).

Арксинус (y = arcsin x ) - обратная тригонометрическая функция к sin (x = sin y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его sin .

Функция y=sin x непрерывна и ограничена на всей своей числовой прямой. Функция y=arcsin x - строго возрастает.

Свойства функции arcsin .

График арксинуса.

Получение функции arcsin .

Есть функция y = sin x . На всей своей области определения она кусочно-монотонная, таким образом, обратное соответствие y = arcsin x не является функцией. Поэтому рассматриваем отрезок, на котором она только возрастает и принимает каждое значение области значений — . Т.к. для функции y = sin x на интервале все значения функции получается при только одном значении аргумента, значит, на этом отрезке есть обратная функция y = arcsin x , у которой график является симметричным графику функции y = sin x на отрезке относительно прямой y = x .

Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График имеет вид асимметричной кривой, проходящей через центр координат.

Свойства арксинуса:

Если сопоставить графики sin и arcsin , у двух тригонометрических функций можно найти общие закономерности.

Арккосинус

Arccos числа а — это значение угла α, косинус которого равен а.

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos — .
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

Ответ: рис. 1 – 4, рис.2 — 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = — arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккотангенс

Arcctg числа a — принимает такое значение α из интервала (0; π), что его котангенс равен а.

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

Задание 2. Соотнести график и форму записи функции.

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg. Из свойств арктангенса известно, что y=0 при x = 0,

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

Также существуют соотношения для arctg и arcctg:

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро. Для начала, перенесем arcsin x в правую часть равенства.

Если вспомнить формулу arcsin (sin α) = α , то можно свести поиск ответов к решению системы из двух уравнений:

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1]. При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = — 1/a. При a = 0, x будет равен 1.

Задания, связанные с обратными тригонометрическими функциями, часто предлагаются на школьных выпускных экзаменах и на вступительных экзаменах в некоторых ВУЗах. Подробное изучение этой темы может быть достигнуто только на факультативных занятиях или на элективных курсах. Предлагаемый курс призван как можно полнее развить способности каждого ученика, повысить его математическую подготовку.

Курс рассчитан на 10 часов:

1.Функции arcsin x, arccos x, arctg x, arcctg x (4 ч.).

2.Операции над обратными тригонометрическими функциями (4 ч.).

3.Обратные тригонометрические операции над тригонометрическими функциями (2 ч.).

Урок 1 (2 ч.) Тема: Функции y = arcsin x, y = arccos x, y = arctg x, y = arcctg x.

Цель: полное освещение данного вопроса.

1.Функция y = arcsin х.

а) Для функции y = sin x на отрезке существует обратная (однозначная) функция, которую условились называть арксинусом и обозначать так: y = arcsin x. График обратной функции симметричен с графиком основной функции относительно биссектрисы I - III координатных углов.

Свойства функции y = arcsin x .

1)Область определения: отрезок [-1; 1];

2)Область изменения: отрезок ;

3)Функция y = arcsin x нечетная: arcsin (-x) = - arcsin x;

4)Функция y = arcsin x монотонно возрастающая;

5)График пересекает оси Ох, Оу в начале координат.

Пример 1. Найти a = arcsin . Данный пример подробно можно сформулировать так: найти такой аргумент a , лежащий в пределах от до , синус которого равен .

Решение. Существует бесчисленное множество аргументов, синус которых равен , например: и т.д. Но нас интересует только тот аргумент, который находится на отрезке . Таким аргументом будет . Итак, .

Пример 2. Найти .Решение. Рассуждая так же, как и в примере 1, получим .

б) устные упражнения. Найти: arcsin 1, arcsin (-1), arcsin , arcsin (), arcsin , arcsin (), arcsin , arcsin (), arcsin 0. Образец ответа: , т.к. . Имеют ли смысл выражения: ; arcsin 1,5; ?

в) Расположите в порядке возрастания: arcsin, arcsin (-0,3), arcsin 0,9.

II. Функции y = arccos x, y = arctg x, y = arcctg x (аналогично).

Урок 2 (2 ч) Тема: Обратные тригонометрические функции, их графики.

Цель: на данном уроке необходимо отработать навыки в определении значений тригонометрических функций, в построении графиков обратных тригонометрических функций с использованием Д (у), Е (у) и необходимых преобразований.

На данном уроке выполнить упражнения, включающие нахождение области определения, области значения функций типа: y = arcsin , y = arccos (x-2), y = arctg (tg x), y = arccos .

Следует построить графики функций: а) y = arcsin 2x; б) y = 2 arcsin 2x; в) y = arcsin ;

г) y = arcsin ; д) y = arcsin ; е) y = arcsin ; ж) y = | arcsin | .

Пример. Построим график y = arccos

В домашнее задание можно включить следующие упражнения: построить графики функций: y = arccos , y = 2 arcctg x, y = arccos | x | .

Графики обратных функций

Урок № 3 (2 ч.) Тема:

Операции над обратными тригонометрическими функциями.

Цель: расширить математические познания (это важно для поступающих на специальности с повышенными требованиями к математической подготовке) путем введения основных соотношений для обратных тригонометрических функций.

Материал для урока.

Некоторые простейшие тригонометрические операции над обратными тригонометрическими функциями: sin (arcsin x) = x , i xi ? 1; cos (arсcos x) = x , i xi ? 1; tg (arctg x)= x , x I R; ctg (arcctg x) = x , x I R.

Упражнения.

а) tg (1,5 + arctg 5) = - ctg (arctg 5) = .

ctg (arctg x) = ; tg (arcctg x) = .

б) cos ( + arcsin 0,6) = - cos (arcsin 0,6). Пусть arcsin 0,6 = a , sin a = 0,6;

cos (arcsin x) = ; sin (arccos x) = .

Замечание: берем перед корнем знак “+” потому, что a = arcsin x удовлетворяет .

в) sin (1,5 + arcsin ).Ответ: ;

г) ctg ( + arctg 3).Ответ: ;

д) tg ( – arcctg 4).Ответ: .

е) cos (0,5 + arccos ) . Ответ: .

Вычислить:

a) sin (2 arctg 5) .

Пусть arctg 5 = a , тогда sin 2 a = или sin (2 arctg 5) = ;

б) cos ( + 2 arcsin 0,8).Ответ: 0,28.

в) arctg + arctg .

Пусть a = arctg , b = arctg ,

тогда tg (a + b) = .

г) sin (arcsin + arcsin ).

д) Доказать, что для всех x I [-1; 1] верно arcsin x + arccos x = .

Доказательство:

arcsin x = – arccos x

sin (arcsin x) = sin ( – arccos x)

x = cos (arccos x)

Для самостоятельного решения: sin (arccos ), cos (arcsin ) , cos (arcsin ()), sin (arctg (- 3)), tg (arccos ) , ctg (arccos ).

Для домашнего решения: 1) sin (arcsin 0,6 + arctg 0); 2) arcsin + arcsin ; 3) ctg ( – arccos 0,6); 4) cos (2 arcctg 5) ; 5) sin (1,5 – arcsin 0,8); 6) arctg 0,5 – arctg 3.

Урок № 4 (2ч.) Тема: Операции над обратными тригонометрическими функциями.

Цель: на данном уроке показать использование соотношений в преобразовании более сложных выражений.

Материал для урока.

УСТНО:

а) sin (arccos 0,6), cos (arcsin 0,8);

б) tg (arcсtg 5), ctg (arctg 5);

в) sin (arctg -3), cos (arcсtg());

г) tg (arccos ), ctg (arccos()).

ПИСЬМЕННО:

1) cos (arcsin + arcsin + arcsin ).

2) cos (arctg 5–arccos 0,8) = cos (arctg 5) cos (arccos 0,8) + sin (arctg 5) sin (arccos 0,8) =

3) tg ( - arcsin 0,6) = - tg (arcsin 0,6) =

4)

Самостоятельная работа поможет выявить уровень усвоения материала

1) tg (arctg 2 – arctg )

2) cos( - arctg2)

3) arcsin + arccos

1) cos (arcsin + arcsin )

2) sin (1,5 - arctg 3)

3) arcctg3 – arctg 2

Для домашнего задания можно предложить:

1) ctg (arctg + arctg + arctg ); 2) sin 2 (arctg 2 – arcctg ()); 3) sin (2 arctg + tg ( arcsin )); 4) sin (2 arctg ); 5) tg ( (arcsin ))

Урок № 5 (2ч) Тема: Обратные тригонометрические операции над тригонометрическими функциями.

Цель: сформировать представление учащихся об обратных тригонометрических операциях над тригонометрическими функциями, основное внимание уделить повышению осмысленности изучаемой теории.

При изучении данной темы предполагается ограничение объема теоретического материала, подлежащего запоминанию.

Материал для урока:

Изучение нового материала можно начать с исследования функции y = arcsin (sin x) и построения ее графика.

3. Каждому x I R ставится в соответствие y I , т.е. <= y <= такое, что sin y = sin x.

4. Функция нечетна: sin(-x) = - sin x ; arcsin(sin(-x)) = - arcsin(sin x).

6. График y = arcsin (sin x) на :

a) 0 <= x <= имеем y = arcsin(sin x) = x, ибо sin y = sin x и <= y <= .

б) <= x <= получим y = arcsin (sin x) = arcsin ( - x) = - x, ибо

sin y = sin ( – x) = sinx , 0 <= - x <= .

Итак,

Построив y = arcsin (sin x) на , продолжим симметрично относительно начала координат на [- ; 0], учитывая нечетность этой функции. Используя периодичность, продолжим на всю числовую ось.

Затем записать некоторые соотношения: arcsin (sin a) = a , если <= a <= ; arccos (cos a ) = a , если 0 <= a <= ; arctg (tg a) = a , если < a < ; arcctg (ctg a) = a , если 0 < a < .

И выполнить следующие упражнения:a) arccos(sin 2).Ответ: 2 - ; б) arcsin (cos 0,6).Ответ: - 0,1 ; в) arctg (tg 2).Ответ: 2 - ;

г) arcctg(tg 0,6).Ответ: 0,9 ; д) arccos (cos ( - 2)).Ответ:2 - ; е) аrcsin (sin ( - 0,6)). Ответ: - 0,6; ж) аrctg (tg 2) = arctg (tg (2 - )). Ответ:2 - ; з) аrcctg (tg 0,6). Ответ: - 0,6; - arctg x; д) arccos + arccos

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y
Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .
Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .
Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

См. также: Вывод формул обратных тригонометрических функций

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при


при

при

при


при

при

при

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.