Последние статьи
Домой / Окружающий мир / Атомный номер водорода в таблице менделеева. Реакции водорода со сложными веществами

Атомный номер водорода в таблице менделеева. Реакции водорода со сложными веществами

Вода из огня! Это кажется невероятным, но это факт. И этот факт впервые установил (1781-1782) английский ученый Генри Кэвендиш . Он сжег в закрытом сосуде бесцветный, без вкуса и запаха газ, который в те времена называли "горючим воздухом", и обнаружил, что продуктом горения была вода. Вначале Кэвендиш не поверил полученному результату, но, проделав ряд точных опытов по сжиганию "горючего воздуха", он убедился, что продуктом горения была только вода, "которая не имела ни вкуса, ни запаха и при испарении досуха не оставляла ни малейшего заметного осадка".

Следует отметить, что еще до Кэвендиша выдающийся английский естествоиспытатель Д. Пристли наблюдал появление влаги при горении и взрыве смеси "горючего воздуха", но... не обратил на это должного внимания.

Несмотря на то, что "горючий воздух" был известен еще средневековому немецкому врачу и естествоиспытателю Парацельсу (XVI в.), а знаменитый английский химик, физик и философ Роберт Бойль в 1660 г. сумел не только получить "горючий воздух" из серной кислоты и железа, но и собрать его в сосуд, чего не умели делать до него, простая (элементарная) природа этого газа была установлена только в 1783 г.

В этом году французский ученый Антуан Лоран Лавуазье, желая проверить опыты Кэвендиша , провел точные исследования по изучению продукта горения "горючего воздуха". Они подтвердили опыты Кэвендиша - продуктом горения "горючего воздуха" была только вода. Это доказал Лавуазье не только путем сжигания "горючего воздуха", но и разлагая продукты его горения. Правда, поводом к анализу воды послужило отыскание дешевого способа получения водорода, предпринятое Лавуазье по заданию французской Академии наук в связи с начавшимся развитием воздухоплавания.

За способность производить воду "горючий воздух" стали впоследствии называть водородом. Научное название водорода - "хидрогениум " происходит от греческих слов "хидор " - вода и "генао " - рождаю, произвожу. Таким образом, в названии водорода отражено его основное свойство - способность при горении образовывать воду.

Атомы водорода имеют наименьший вес среди всех атомов других химических элементов, и поэтому водород занимает первое место в периодической системе Д. И. Менделеева.

Водород - один из наиболее распространенных элементов природы, он всюду обнаружен во Вселенной - на Солнце, звездах, в туманностях, в мировом пространстве. На Земле основная масса водорода находится в связанном состоянии в виде различных соединений, главным образом на поверхности земли в виде воды. Общее количество водорода в земной коре достигает 1% от веса земной коры.

В межзвездном пространстве атомы водорода встречаются в несколько сот раз чаще, чем атомы всех остальных элементов, вместе взятых. Водород преобладает над другими элементами в атмосферах звезд и является главной составной частью солнечной атмосферы.

Значение водорода во Вселенной исключительно велико, он играет особую роль, являясь "космическим топливом", дающим энергию звездам, а в их числе и Солнцу.

В недрах Солнца, где температура достигает 20 миллионов градусов и вещество находится под давлением восьми миллиардов атмосфер, атомы водорода теряют электроны и ядра таких атомов (протоны) приобретают скорости, при которых протекают ядерные реакции. Ядерные реакции, происходящие при очень высокой температуре, называются термоядерными. Термоядерная реакция, при которой из 4-х ядер водорода образуется ядро нового химического элемента - гелия , и является источником солнечной энергии.

Образование гелия из водорода, как показал немецкий ученый Бете, происходит на Солнце значительно сложнее, но конечный итог реакции дает тот же результат: вместо 4-х ядер водорода появляется ядро гелия . Энергия, освобождающаяся при этой реакции, обеспечивает излучение того огромного количества тепла и света, которое дает Солнце в течение уже многих миллиардов лет. Чтобы представить себе количество энергии, излучаемой Солнцем, достаточно сказать, что для выработки такой энергии понадобилось бы 180000000 миллиардов электростанций, обладающих мощностью Волжской ГЭС.

Водород в свободном состоянии встречается на земле в вулканических газах; небольшое количество водорода выделяется растениями. В атмосфере, даже в верхних ее слоях, водород содержится в незначительных количествах, не превышающих 0,00005% по объему.

В чистом виде водород представляет собой газ в 14,45 раз легче воздуха, не имеющий цвета, запаха и вкуса. Не ядовит. Водород диффундирует и эффундирует быстрее всех других газов и лучше всех их проводит тепло (теплопроводность водорода в 7 раз больше чем у воздуха).

В природе водород встречается в виде трех изотопов: обычный водород, тяжелый и сверхтяжелый водород. Тяжелый водород содержится в обычном водороде в небольших количествах. На 5 тыс. атомов обычного водорода приходится 1 атом тяжелого. От греческого слова "деутерос ", что значит второй, тяжелый водород, как второй изотоп водорода, называется дейтерием. По аналогии с протоном ядро этого атома получило название дейтон ; часто его называют дейтерон .

Обозначают дейтерий или латинской буквой D, или сохраняют химическое обозначение водорода и, указывая цифрой 2 его массовое число, пишут Н 2 .

Дейтерий отличается от обычного водорода строением ядра. Ядро дейтерия состоит из протона и нейтрона, поэтому масса атома дейтерия в 2 раза больше массы атома обычного водорода. Такое резкое расхождение в массах изотопов одного и того же химического элемента является единственным случаем среди известных изотопов различных элементов. Обычный водород, атомы которого являются простейшими (состоят из одного протона и одного электрона), от слова "протос " - простой - называется иногда протием.

Вода, в которой протий заменен дейтерием, называется тяжелой. Она отличается от обычной своими свойствами. Так, тяжелая вода замерзает не при 0° С , как обычная, а при +3,8° С, кипит не при 100° С, а при 101,4° С, имеет большую плотность (1,1056), чем обычная; в тяжелой воде невозможна жизнь. В обычной воде всегда содержится примесь тяжелой . Количество ее невелико и составляет 0,02% от общей массы. Однако собранная со всего земного шара, она могла бы наполнить водоем, равный по величине объему Черного моря.

Тяжелая вода используется при получении атомной энергии в ядерных реакторах в качестве вещества, замедляющего нейтроны.

Получение тяжелой воды в чистом виде - длительный и дорогой процесс, основанный на электролизе (разложении электрическим током) воды, при котором в первую очередь разлагаются молекулы "обыкновенной" воды, тогда как тяжелая накапливается в остатке. В Западной Европе производство тяжелой воды в промышленном масштабе было впервые осуществлено немцами в годы второй мировой войны на территории оккупированной Норвегии, располагавшей дешевой энергией гидроэлектростанций. Тяжелая вода предназначалась для создания нового вида оружия (атомной бомбы), на которое командование фашистских армий возлагало последние надежды. 28 февраля 1943 г. норвежские патриоты совместно с английскими парашютистами взорвали цех тяжелой воды. Начавшиеся вслед за этим налеты на завод английской авиации вынудили фашистское командование перевезти оборудование и накопленный запас воды в Германию. Норвежские бойцы из армии сопротивления 20 февраля 1945 г. взорвали пароход уничтожив вместе с оборудованием и 16 куб. м тяжелой воды.

Известен и третий "сверхтяжелый" изотоп. Тритий - называют этот изотоп от латинского слова "тритиум " - третий. Он может быть получен искусственным путем в результате ядерных реакций, например, при "стрельбе" нейтронами в атомы легкого металла лития . В ядрах атомов трития имеется два нейтрона и один протон. В природе распространенность трития ничтожно мала. Один атом трития приходится на миллиард миллиардов атомов обычного водорода. Тритий является радиоактивным изотопом водорода. Он излучает бета-частицы и превращается в изотоп гелия с атомным весом 3. Период полураспада трития около 12,5 лет.

Группа итальянских физиков, изучив несколько тысяч снимков ядерных реакций, обнаружила четвертого "брата" в семействе атомов водорода (его атомный вес равен 4). Насколько трудной была задача обнаружения "сверхтяжелейшего " водорода, говорит время его существования, равное 0,00000000001 доли секунды.

Кроме обычных молекул водорода, состоящих из двух атомов, предполагается возможность получения трехатомной молекулы - гизония . Не исключено, что гизоний столь же недолговечен, как и "сверхтяжелейший " водород.

Практическое применение водорода разнообразно. Являясь наилегчайшим газом, он используется для наполнения оболочек воздушных шаров, метеорологических зондов, стратостатов и других воздухоплавательных аппаратов. История воздухоплавания, начиная с воздушного шара в 18 куб. м, созданного французским физиком Шарлем, до гигантских управляемых дирижаблей германского конструктора Цеппелина, неразрывно связана с водородом. Однако горючесть водорода при легкой его воспламеняемости от случайных и трудно устранимых причин (грозовые разряды, искры при электризации трением и др.) ограничивала возможности его использования в воздухоплавании.

С ясного и безоблачного неба в самых неожиданных местах на территории США в годы второй мировой войны падали бомбы раздавались взрывы, пылали пожары. Но об этих таинственных налетах, без сигналов тревоги и вражеских самолетов в воздухе, хранила молчание даже падкая на сенсации американская печать. Лишь несколько лет назад было сообщено, что эти таинственные бомбардировки осуществлялись воздушными шарами, запущенными с японских островов. Таких шаров было запущено более тысячи.

В химической промышленности водород служит исходным материалом для получения различных веществ (аммиака, твердых жиров и т. д.). Высокая температура горения водорода (до 2500°С) в кислороде используется с помощью специальных горелок для плавления кварца, тугоплавких металлов, разрезания стальных плит и т. д.

Весьма заманчива своей дешевизной идея двигателя внутреннего сгорания, использующего в качестве топлива водород. Такой мотор, потребляя водород и воздух, выбрасывает в качестве продукта сгорания воду.

Для получения водорода в качестве топлива нужна только...в ода. Запасы воды - основного "сырья" для получения водорода - на земном шаре буквально неисчерпаемы и составляют 2 миллиарда миллиардов тонн. Так же неисчерпаема и энергия текучей веды крупных рек, которая, превращаясь на электростанциях в энергию электричества, может служить для получения водорода из воды разложением ее электрическим током.

Успехи атомной физики и химии открыли путь к возможности использования в практических целях изотопов водорода. К сожалению, эти возможности в первую очередь были использованы для целей военного характера, для создания водородной бомбы.

В водородной бомбе используется энергия термоядерной реакции (между дейтерием и тритием), ведущей к образованию гелия и выделению нейтронов. Чтобы между изотопами водорода началась реакция, надо нагреть их до сверхвысоких температур порядка не менее 10 млн. градусов. Такая температура возникает при взрыве атомной бомбы, которая играет роль запала в водородной бомбе.

Водородная бомба превосходит по своей силе атомную . Дело в том, что в атомной бомбе количество атомного взрывчатого материала ограничено и не может превышать определенной так называемой критической массы; в водородной бомбе количество взрывчатого вещества (смесь изотопов водорода) не ограничено.

3. Почему водород, в отличие от всех других элементов, записывают в Периодической таблице Д.И. Менделеева дважды? Докажите правомочность двойственного положения водорода в Периодической системе, сравнив строение и свойства его атома, простого вещества и соединений с соответствующими формами существования других элементов - щелочных металлов и галогенов.

Водород можно записать в первую группу, т.к. его атом имеет на внешней оболочке 1 электрон, как и щелочные металлы, но также ему не хватает до завершения внешнего электронного слоя одного электрона, как и галогенам, поэтому его можно записать в седьмую группу. Водород при обычных условиях образует как и галогены двухатомную молекулу простого вещества с одинарной связью - газа, как фтор или хлор. Водород, как и галогены, соединяется с металлами, образуя нелетучие гидриды. Однако как и щелочные металлы водород может проявлять валентность только равную I, а галогены, как правило, образуют множество соединений, проявляя различную валентность.

Общая характеристика водорода как элемента

Химический знак – Н

Относительная атомная масса – 1,008

В соединениях водород одновалентен, степень окисления в соединениях с неметаллами равна +1, в соединениях с металлами равна –1.

Водород как вещество

Химическая формула – Н 2

Относительная молекулярная масса – 2,016

Способы получения водорода:

В лабораторных условиях водород получают несколькими способами:

· Действием кислот (серной, соляной) на некоторые металлы, в частности на цинк и железо;

· Действием раствора щелочи на металлический алюминий;

· Вытеснением активными металлами (Na, Ca и др.) из воды.

В промышленности основным видом сырья для получения водорода являются природные и нефтезаводские газы. В СССР водород получали в небольших масштабах методом неполного окисления метана при температуре 850 - 900°С в присутствии катализатора – никеля, нанесенного на оксид алюминия:

2CH 4 + O 2 → 2CO + 4H 2 + 71,4 кдж

Отделить водород от оксида углерода (II) можно путем его окисления водяным паром при температуре 200 – 250°С и в присутствии катализатора:

CO + H 2 O ↔ H 2 + CO 2 + 42 кдж

В местах с дешевой электрической энергией водород получают электролизом воды, к которой для увеличения ее электропроводности прибавляют какой-либо электролит, обычно щелочь или кислоту.

Физические свойства водорода:

  • Неметалл
  • Бесцветный, легкий (в 14,5 раз легче воздуха), трудно сжижаемый газ
  • Очень мало растворяется в воде, лучше – в органических растворителях
  • Наибольшая среди газообразных веществ скорость диффузии – молекулы водорода быстрее любых иных распространяются в среде другого вещества
  • Температура плавления равна -259,2°С, температура кипения равна -252,9°С.

Химические свойства водорода:

При комнатной температуре водород мало активен и реагирует только с фтором, а на свету – с хлором. В смесях с кислородом и воздухом водород при содержании более 4,5% образует взрывчатые смеси («гремучий газ»). Взрыв может произойти даже от маленькой искры.

1. Водород соединяется с кислородом

2H 2 + O 2 → 2H 2 O

2. Водород реагирует с оксидами некоторых металлов (при нагревании)

H 2 + CuO → H 2 O + Cu

3. Водород соединяется с некоторыми неметаллами и активными металлами

H 2 + Cl 2 → 2HCl

H 2 + S → H 2 S

H 2 + 2Na → 2NaH

Применение водорода:

Большое количество водорода используется для синтеза аммиака, который, в свою очередь, применяется для производства удобрений, азотной кислоты и как рабочее вещество холодильных машин. Много водорода расходуют на такие важные химические производства, как получение синтетической соляной кислоты, превращение жидких растительных жиров в твердые, преобразования низкосортных углей в жидкое топливо, получение метилового спирта из оксида углерода (II) и т.д. В металлургии его используют для получения таких металлов, как молибден и вольфрам восстановлением их оксидов.

Источники

1. Барков, С. А. Галогены и подгруппа марганца. Элементы VII группы периодической системы Д. И. Менделеева. Пособие для учащихся / С. А. Барков // М.: Просвещение, 1976.

2. Кузнецова, Н. Е. Химия: 8 класс. Учебник для учащихся общеобразовательных учреждений / Н. Е. Кузнецова, И. М. Титова, Н. Н. Гара, А. Ю. Жегин // М.: Вентана-Граф, 2008.

3. Леенсон, И. А. Путеводитель по химическим элементам. Из чего состоит Вселенная? / И. А. Леенсон // М.: АСТ, 2014. – 168 с.: ил.

4. Лидин, Р. А. Химические свойства неорганических веществ / Р. А. Лидин, В. А. Молочко, Л. Л. Андреева // М.: Химия, 2000.

5. Рудзитис, Г. Е. Химия. Учебное пособие для 7 – 11 классов вечерней (сменной) общеобразовательной школы. Часть 1 // Г. Е. Рудзитис, Ф. Г. Фельдман // М.: Просвещение, 1985.

  • Обозначение - H (Hydrogen);
  • Латинское название - Hydrogenium;
  • Период - I;
  • Группа - 1 (Ia);
  • Атомная масса - 1,00794;
  • Атомный номер - 1;
  • Радиус атома = 53 пм;
  • Ковалентный радиус = 32 пм;
  • Распределение электронов - 1s 1 ;
  • t плавления = -259,14°C;
  • t кипения = -252,87°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,02/-;
  • Степень окисления: +1; 0; -1;
  • Плотность (н. у.) = 0,0000899 г/см 3 ;
  • Молярный объем = 14,1 см 3 /моль.

Бинарные соединения водорода с кислородом:

Водород ("рождающий воду") был открыт английским ученым Г. Кавендишем в 1766 году. Это самый простой элемент в природе - атом водорода имеет ядро и один электрон, наверное, по этой причине водород является самым распространенным элементом во Вселенной (составляет более половины массы большинства звезд).

Про водород можно сказать, что "мал золотник, да дорог". Несмотря на свою "простоту", водород дает энергию всем живым существам на Земле - на Солнце идет непрерывная термоядерная реакция в ходе которой из четырех атомов водорода образуется один атом гелия, данный процесс сопровождается выделением колоссального количества энергии (подробнее см. Ядерный синтез).

В земной коре массовая доля водорода составляет всего 0,15%. Между тем, подавляющее число (95%) всех известных на Земле химических веществ содержат один или несколько атомов водорода.

В соединениях с неметаллами (HCl, H 2 O, CH 4 ...) водород отдает свой единственный электрон более электроотрицательным элементам, проявляя степень окисления +1 (чаще), образуя только ковалентные связи (см. Ковалентная связь).

В соединениях с металлами (NaH, CaH 2 ...) водород, наоборот, принимает на свою единственную s-орбиталь еще один электрон, пытаясь, таким образом, завершить свой электронный слой, проявляя степень окисления -1 (реже), образуя чаще ионную связь (см. Ионная связь), т. к., разность в электроотрицательности атома водорода и атома металла может быть достаточно большой.

H 2

В газообразном состоянии водород находится в виде двухатомных молекул, образуя неполярную ковалентную связь.

Молекулы водорода обладают:

  • большой подвижностью;
  • большой прочностью;
  • малой поляризуемостью;
  • малыми размерами и массой.

Свойства газа водорода:

  • самый легкий в природе газ, без цвета и запаха;
  • плохо растворяется в воде и органических растворителях;
  • в незначительных кол-вах растворяется в жидких и твердых металлах (особенно в платине и палладии);
  • трудно поддается сжижению (по причине своей малой поляризуемости);
  • обладает самой высокой теплопроводностью из всех известных газов;
  • при нагревании реагирует со многими неметаллами, проявляя свойства восстановителя;
  • при комнатной температуре реагирует со фтором (происходит взрыв): H 2 + F 2 = 2HF;
  • с металлами реагирует с образованием гидридов, проявляя окислительные свойства: H 2 + Ca = CaH 2 ;

В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Восстановительные свойства водорода широко используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов и галлидов.

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Реакции водорода с простыми веществами

Водород принимает электрон, играя роль восстановителя , в реакциях:

  • с кислородом (при поджигании или в присутствии катализатора), в соотношении 2:1 (водород:кислород) образуется взрывоопасный гремучий газ: 2H 2 0 +O 2 = 2H 2 +1 O+572 кДж
  • с серой (при нагревании до 150°C-300°C): H 2 0 +S ↔ H 2 +1 S
  • с хлором (при поджигании или облучении УФ-лучами): H 2 0 +Cl 2 = 2H +1 Cl
  • с фтором : H 2 0 +F 2 = 2H +1 F
  • с азотом (при нагревании в присутствии катализаторов или при высоком давлении): 3H 2 0 +N 2 ↔ 2NH 3 +1

Водород отдает электрон, играя роль окислителя , в реакциях с щелочными и щелочноземельными металлами с образованием гидридов металлов - солеобразные ионные соединения, содержащие гидрид-ионы H - - это нестойкие кристаллические в-ва белого цвета.

Ca+H 2 = CaH 2 -1 2Na+H 2 0 = 2NaH -1

Для водорода нехарактерно проявлять степень окисления -1. Реагируя с водой, гидриды разлагаются, восстанавливая воду до водорода. Реакция гидрида кальция с водой имеет следующий вид:

CaH 2 -1 +2H 2 +1 0 = 2H 2 0 +Ca(OH) 2

Реакции водорода со сложными веществами

  • при высокой температуре водород восстанавливает многие оксиды металлов: ZnO+H 2 = Zn+H 2 O
  • метиловый спирт получают в результате реакции водорода с оксидом углерода (II): 2H 2 +CO → CH 3 OH
  • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице "Водород и его соединения - уравнения химических реакций с участием водорода ".

Применение водорода

  • в атомной энергетике используются изотопы водорода - дейтерий и тритий;
  • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
  • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
  • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
  • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
  • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
  • как топливо водород используют в смеси с СО.

В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является "водородная" энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

Способы получения водорода

Промышленные способы получения водорода:

  • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH 4 + 2H 2 O = 4H 2 + CO 2 ;
  • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe 2 O 3: CO + H 2 O = CO 2 + H 2 ;
  • термическим разложением метана: CH 4 = C + 2H 2 ;
  • газификацией твердых топлив (t=1000°C): C + H 2 O = CO + H 2 ;
  • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H 2 O → 2H 2 + O 2 .

Лабораторные способы получения водорода:

  • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl 2 + H 2 ; Zn + H 2 SO 4 = ZnSO 4 + H 2 ;
  • взаимодействием паров воды с раскаленными железными стружками: 4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 .

Введение

Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий №Н, дейтерий ІН или D, тритий іН или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий в природе находится в ничтожно малых количествах.

Ядро атома водорода №Н содержит один протон. Ядро дейтерия и трития включают не только протон, но и один, два нейтрона. Молекула водорода состоит из двух атомов. Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Энергия ионизации атома, эВ 13,60

Сродство атома к электрону, эВ 0,75

Относительная электроотрицательность 2,1

Радиус атома, нм 0,046

Межъядерное расстояние в молекуле, нм 0,0741

Стандартная энтальпия диссоциации молекул при 25єС 436,1

Водород. Положение водорода в периодической таблице Д.И. Менделеева

В самом конце XVIII и в начале XIХ века химия вступила в период установления количественных закономерностей: в 1803 году был сформулирован закон кратных отношений (вещества реагируют между собой в весовых отношениях, кратных химическим эквивалентам), а в 1814 году опубликована первая в истории химической науки таблица относительных атомных весов элементов. В этой таблице на первом месте оказался водород, а атомные массы других элементов выражались числами, близкими к целым.

Особое положение, которое с самого начала занял водород, не могло не привлечь внимания ученых, и в 1841 году химики смогли ознакомиться с теорией Уильяма Праута, развившего теорию Древнегреческих философов о единстве мира и предположившего, что все элементы образованы из водорода как из самого легкого элемента. Прауту возражал Й.Я. Берцелиус, как раз занимавшийся уточнением атомных весов: из его опытов следовало, что атомные веса элементов не находятся в целочисленных отношениях к атомному весу водорода. Но, возражали сторонники Праута, атомные веса определены еще недостаточно точно и в качестве примера ссылались на эксперименты Жана Стаса, который в 1840 году исправил атомный вес углерода с 11,26 (эта величина была установлена Берцелиусом) на 12,0.

И все же привлекательную гипотезу Праута пришлось на время оставить: вскоре тот же Стас тщательными и не подлежащими сомнению исследованиями установил, что, например, атомный вес хлора равен 35,45, т. е. никак не может быть выражен числом, кратным атомному весу водорода...

Но вот в 1869 году Дмитрий Иванович Менделеев создал свою периодическую классификацию элементов, положив в ее основу атомные веса элементов как их наиболее фундаментальную характеристику. И на первом месте в системе элементов, естественно, оказался водород.

С открытием периодического закона стадо ясно, что химические элементы образуют единый ряд, построение которого подчиняется какой-то внутренней закономерности. И это не могло вновь не вызвать к жизни гипотезу Праута, -- правда, в несколько измененной форме: в 1888 году Уильям Крукс предположил, что все элементы, в том числе и водород, образованы путем уплотнения некоторой первичной материи, названной им протилом. А так как протил, рассуждал Крукс, по-видимому, имеет очень малый атомный вес, то отсюда понятно и возникновение дробных атомных весов.

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 году Менделеев называет... «мировой эфир». Более того, он помещает его в нулевую группу над гелием и рассчитывает его атомный вес -- 0,000001! Инертный газ со столь малым атомным весом должен быть по мнению Менделеева, всепроникающим, а его упругие колебания могли бы объяснить световые явления...

Увы, атому предвидению великого ученого не было суждено сбыться. Но Менделеев был прав в том отношении, что элементы не построены из тождественных частиц: мы знаем теперь, что они построены из протонов, нейтронов и электронов.

Но позвольте, воскликнете вы, ведь протон -- это ядро атома водорода. Значит Праут был все-таки прав? Да, он действительно был по-своему прав. Но это была, если можно так выразиться, преждевременная правота, потому что в то время ее нельзя было ни по-настоящему подтвердить, ни по-настоящему опровергнуть...

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчитанный на ее основе спектр водорода полностью совпал с наблюдаемым.